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Abstract. This paper introduces a model based on a multi-agent
system that learns using the extended classifier system (MAXCS).
The agents are informed in the news, after the weather forecast, the
congestion levels of the main city avenues and they decide which avenue
to use the following day. The results are encouraging, as the agents, both
homogeneous and heterogeneous adapt to the congestion thresholds set
by the authorities. The main factors for this adaptation are the reward
received by the agents and their perception.
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1 Introduction

The government of Mexico City has recently (5th December, 2003) introduced a
traffic system that measures the congestion in the main avenues of the city. This
measure is done counting the number of cars per minute that cross certain key
points in the avenues. Then, the congestion for each of the avenues is reported
in the evening news following the weather forecast. It has been shown how a
number of agents can adapt to several comfort thresholds in modes of transport
if they perceive the same information, in this case the congestion report in the
news [10].

This paper introduces a system where heterogeneous agents, that learn from
the traffic reports, can co-evolve and produce traffic self-organization using in-
ductive reasoning [1]. Inductive reasoning is ideal to solve ill-defined problems
like the one analyzed here. There are avenue comfort thresholds set by the city
government, though some agents ignore them. Each agent has a level of traffic
tolerance, which is assumed to be +-0.1 of the threshold set by the authorities,
in case they ignore the figure suggested by the government. The agents translate
the capacity reports into rules, which they evolve using an extended classifier
system (XCS) [18,4]. Several experiments with different thresholds and different
number of agents show that this evolutionary computation approach for traffic
self-organization is feasible and could be used both, by the people – to decide
which avenue to take for their journey – and by the city authorities to assess
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which city routes need expansion or an alternative path (such as another metro
line, bicycle lanes, or which public transport mode to improve). The experimen-
tal results also show that when all the agents pay attention to the suggestion
made by the authorities (homogeneous agents) or they are less tolerant to what
the authorities suggest (heterogeneous less-tolerant agents), the comfort thresh-
old in the avenues is achieved. As most of the agents do not pay attention to
what the authorities suggest, the avenue usage depends on the reward received,
rather than the tolerance of the agents. Furthermore, the multi-agent simulation
allows individual behavior analysis. These results are supported by 20 sets of ex-
periments. Section 2 presents the model on which this system is based. Section
3 gives a brief overview of the learning algorithm (XCS). Section 4 introduces
MAXCS a multi-agent system that learns using XCS. Section 5 explains the
experimental settings followed by the results in Section 6.

2 Traffic Simulation Model and Representation

Each of the main avenues of Mexico City, which are the arteries of the main routes
through the city, have recently been provided with car counters and cameras to
assess the congestion levels. The government has set a novel strategy of providing
this data to the citizens after the weather news every evening. The government
makes suggestions of how the congestion can impact the travel time based on the
number of cars per minute that pass by the car counters. This model proposes
and shows that instead of telling the people what to do, it is better to give them
the congestion information and let them learn from it.

Therefore, the model used for this simulation tries to be as realistic as possible
and takes only the information that the users receive from the traffic report every
evening to plan their journey the following day.

It is assumed that the users modeled are traveling in the same routes in the
city and that the number of avenues they can use is limited, therefore they have
to make a decision on which avenues to use. Sometimes the users can decide to
take an alternative route through the city, hence not congesting the avenues. All
three possible choices are parallel, therefore no intersections need to be modeled.

The agents learn to model their environment by encoding it into rules. Each
rule has a condition and action part representing if-then rules. The condition
part represents several previous days of congestion information for each of the
avenues. Each agent has comfort preferences, which the agents encode as a binary
set: 1 represents that the avenue was not congested, 0 that it was. Every evening
the agents compare the number of cars per minute in the avenue to their comfort
threshold and encode the bit. For example, a bit set as 10 would tell the agent
that it was good to use avenue 1 and not avenue 2. Then, each agent has bit sets
for every day information. To keep some homogeneity in the system, the agents
have the same memory (5 days). The action part tells the agent which avenue
to use if any, i.e. 0 alternative route(not using the avenues that are monitored),
1 take avenue 1, 2 take avenue 2, etc. This model is based on previous find-
ings [9].
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R =
1000

e

(
(congestion−CT )2·1000

)2 (1)

The agents learn through a reinforcement learning mechanism (XCS) and a
reward is given based on equation 1 using the algorithm in Fig. 1, where CT
is the avenue comfort threshold. For every step, all agents encode the levels of
congestion of their preferred route and using XCS – explained in the next section
– they decide which action to take, either one of the avenues, or a side street. As
seen in Fig. 1, if the agents decide to take an alternative route they are rewarded
if and only if all the avenues are congested – as it would take longer to reach
their destination – and in that case they receive half of the maximum reward.
Hence there are AV+1 actions for the agents.

In Fig. 1 the variables are: MAXAV , constant that indicates the maximum
number of avenues. MAXAGS, constant that indicates the maximum number
of agents. MAXACTIONS, constant value MAXAV+1. maxReward, constant
with value 1000. alt route, Boolean variable that indicates if action 0 was the
best. pay Reward, function that calculates the reward value using Eq. 1. usage,
array indexed by avenue number. avenue result, array indexed by avenue num-
ber, showing whether it was good (1) or not (0) to use an avenue. rewards, array
of size MAXACTIONS+1, indexed by action number and which in rewards[0]
keeps the reward for action 0. All the arrays’ cells are initialized to zero.

3 Extended Classifier System (XCS)

Learning classifier systems (LCS) [15] are a machine learning system, situated
in an environment that presents a problem that the system tries to learn and
solve. The learning process takes place in discontinuous time intervals, where
the system is presented a state and it gives an answer to it; depending on the
answer there is a reward. If the reward is given just after the action is evaluated,
the problem is considered a single step problem; if the reward is given after
several actions are taken, it is called a multiple-step problem. If the sensors
provide enough information for the system to differentiate the different states of
the problem, i.e. each state is different to the system’s sensors, the problem is
called Markovian, if not it is called non-Markovian [17]. A problem is also called
stationary if for the same state, the correct action is the same [17].

LCSs learn by evolving simple strings encoded as if-then rules using a genetic
algorithm (GA) [13] and a reinforcement learning algorithm (RLA) [17] to de-
termine the usefulness of the rules. The condition composed generally by 0, 1, #
(where # is a wild card) and the action a bit set. The RLA is used to update the
rules’ fitness that can be, for example, the amount of food or the profit that the
rule generates when is activated by the state that the system perceives from the
environment. XCS [18,4] is a LCS that uses 3 parameters to measure a classifier’s
usefulness: the prediction (p) of the reward, the error (ε) of the prediction and
the fitness (F). The fitness of the rule is an inverse function of the error. XCS
uses a Temporal Difference (TD) algorithm to update the values, i.e. learning
classifier systems are evolutionary reinforcement learning methods.
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void Calculate_and_Give_Rewards()
{
for agent=1 to MAXAGS
usage[agent.action]=usage[agent.action]+1

next agent

for avenue=1 to MAXAVS
if(usage[avenue]/MAXAGS)<=thresholds[avenue] then

avenues_result[avenue]=1
else

avenues_result[avenue]=0
end if

next avenue

alt_route=true
for avenue=1 to MAXAVS
if avenues_result[avenue]=1 then
alt_route=false

next avenue

for action=0 to MAXACTIONS
if action=0 then
if alt_route=true then

rewards[action]=maxReward/MAXAVS
else

reward[action]=0
end if

else
rewards[action]= avenue_result[action]*

getReward(usage[action],
end if thresholds[action])

next action

for agent=1 to MAXAGS
update agent values using rewards[agent.action]

next agent
}

Fig. 1. The pseudo code algorithm for the reward calculation and agent update. This
algorithm is run every time step after all the agents take their action [11].

The interactions between XCS and its environment in a single step prob-
lem are cognitive cycles: perception of the environment, activation of the rules
that match the current environmental state (forming the match set [M]), action
selection (forming the action set [A]), environmental evaluation of the action,
reward and reinforcement of the rules that fired the action. The action is selected
from all the possible actions in [M], randomly if exploring or deterministically
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XCS XCS XCSXCS ...     ...

Environment

Fig. 2. MAXCS: each agent is a single, independent XCS.

if exploiting. When exploiting, the prediction value (ΣFjpj

ΣFj
, where j are the

classifiers with the same action) is calculated for all the possible actions in [M],
then the action with the highest value is taken. The GA is used to create new
rules from fit rules. The GA is invoked when the average of the time stamp of the
rules in [A] is greater than the GA threshold (θGA) [18,4]. The rules generated
by the GA are inserted back in the population, and in order to keep the size
of the population constant, the rules are deleted based on the estimated size of
[A], the fitness and the experience of the rule (for all the deletion techniques and
more details about XCS the reader is referred to [18,16,4]).

4 MAXCS: A Multi-agent System That Learns Using
XCS

MAXCS [12,9] is a multi-agent system that learns using a learning classifier
system, each agent is represented by an XCS (Fig. 2).

The accuracy based fitness, the RLA used by XCS to learn, and its genetic
algorithm let XCS evolve accurate and compact rule sets [16]. These rules as in
other LCSs, can be read as if-then rules. This property has been very useful for
the analysis of the behavior of the agents.

MAXCS exploits the possibility of representing individuals directly, (both
their behavior and their interactions) and provides the detailed analysis required
to represent agents correctly [7]. A full “dissection” can be made analyzing the
population of each agent, as well as their individual answers, providing a clearer
result that is easier to understand.

The activation of each set of rules can reveal what is happening individually
in the system, unveiling some features of the system that otherwise would remain
unexplained.

This multi-agent system satisfies the requirements of multi-agent simulation,
based on the idea of a computerized representation of entities’ behavior in the
world. This computerized representation gives the possibility of representing a
phenomenon, which emerges from the interactions of a set of agents with their
own operational autonomy [7].
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Holland [14] proposed the use of learning classifier systems to represent the
agents for an artificial stock market [2], which started the research on agent-
based computational economics (ACE), e.g. [14,2].

The rationale behind applying learning classifier systems to social simulation,
in this paper, is that they are self-explanatory: by looking at their rule population
and the update of the estimation values, a step by step analysis can be made. By
having a self-explanatory system, for social simulation, the behavior of the agents
can be analyzed in detail and properly explained. From an individual analysis
viewpoint this feature can be very valuable. For the work presented here, this
can be interpreted as a snapshot of a person’s mind at the exact moment of
taking the decision of which avenue to take, and the reasons for that decision.

Davidsson [5] has shown how multi-agent based simulation, and other micro
simulation techniques, explicitly attempts to model specific behaviors of specific
individuals. He compared them favorably to macro simulation techniques that
are typically based on mathematical models, where the characteristics of a pop-
ulation are averaged together and the model attempts to simulate changes in
these averaged characteristics for the whole population.

Davidsson’s [5] findings – combined with Ferrari’s [8] – have proved that a
mathematical simulation model has to be discarded and restated from the be-
ginning when new variables are added to the system – bring another opportunity
niche for the micro-LCS-based simulation presented here.

On the other hand, economists (e.g. [1]) and game theorists (e.g. [3]) have
shown that some human decisions are not very rational. Based on this assump-
tion of the lack of rationality in human decisions, MAXCS is used to try to
achieve the suggested usage of the avenues in the city, based on inductive rea-
soning agents [9]. Furthermore, the strategies used by the agents are not set in
advance, but they are evolved and chosen autonomously by each agent. Hence,
the simulation would provide a framework for assessing the different avenues and
their congestion levels and could be used for planning.

5 The Experiment

After the successful use of 10 homogeneous agents and 2 avenues (not shown),
a more difficult setting has been selected. First, 101 homogeneous agents with 2
avenues, after this setting yielded self-organization, heterogeneous agents were
tested. The heterogeneity is computed randomly by assigning 3 types of agents
(type 1, 2 and 3), which take the thresholds told by the authorities, and randomly
add or subtract 0.01 to them. Then, during the run, the modulus by 5 operation
is computed using the agent number to assign the agent type: 1 for type 1, 2 for
type 2, 3 for type 3, leaving 0 and 4 with the thresholds told by the authorities.
Therefore, only 40% of the agents pay attention to what the authorities suggest
for comfort threshold.

Each agent is represented by homogeneous XCS with conditions of size 5
and 3 possible actions with the parameter values: # probability= 0.333, ex-
plore/exploit rate(Px)= 0.5, crossover rate (χ)= 0.8, mutation rate (µ)= 0.02,
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θGA = 25, minimum error (ε0)= 0.01, subsumption experience 50 and learning
rate (β)= 0.2, subsumption deletion (a type of rule “condensation”) is used in
the GA and the action set, these parameter values have yielded good results
before [11]. The populations of the agents are initialized using supersaturation
(each 25% of the population is generated with a different random seed) [6]. The
covering mechanism is used only when [M] is empty (θmna) and all three pos-
sible actions are generated, taking as initial values p=20.00, ε=0.0 and F=0.1.
Exploration in these experiments is done by selecting randomly an action with
Px=0.5 from [M] (first 2500 steps). Px=1.0 for full exploitation trials(last 2500
steps). The former to allow the agents to learn, the latter to test what they have
learned. Avenue 1 has a threshold of 30 cars/min and avenue 2 of 50 cars/min.,
set to 0.3 and 0.5 respectively for the experiments.

Agent heterogeneity is given by how the agents perceive their environment
and react to the congestion of the avenues. After the adaptation to the 0.01
random tolerance change 0.1 was tested too. The use of a percentage rather
than the exact number of cars per minute allows the system to be flexible and
increase the number of agents as it is needed. As the number of agents used in
these experiments is 101, the threshold is almost the same as the number of cars
per minute tolerated by the agents.

6 Results

The results are presented differently depending on the focus that is given. First,
the 20 runs, with different random seeds, are averaged to test if the agents are
learning. Figures 3 and 4 show the average of the 20 runs: Fig. 3 shows all
101 homogeneous agents, Fig. 4 shows a congestion coefficient random variation
of 0.01 for each agent’s perception, which is similar in overall behavior to a
variation of 0.1 (only shown as individual behavior in Fig. 6). Then, to unveil
the reason for the difference between the runs, an individual run is analyzed. As
the individual behavior would get lost with an averaged agent avenue usage.

Fig. 3. Average of 20 runs using 101 homogeneous agents with CT1=0.3 (left) and
CT2=0.5 (right).
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A pattern can be perceived in Figs. 3 and 4: the agents adapt to the threshold
set very early in the experiment, it takes the agents less than 30 days to achieve
the congestion levels set, especially avenue 2 in Fig. 3 is under-congested until
day 1500. Once the exploration phase is switched off and the agents use the
rules they have learned (day 2500), a closer value to that set by the authorities
is achieved in all of the cases.

Fig. 4. Average of 20 runs using 101 heterogeneous agents with CT1=0.3 (left) and
CT2=0.5 (right); 40% of the agents pay attention to the authorities and the rest have
+- 0.01 in their thresholds randomly. A +-0.1 change yielded a similar plot, but a
different individual behavior.

The experiments with homogeneous agents (Fig. 3) and those with a random
0.01 change (Fig. 4) are more similar than both of the heterogeneous agents. A
gap of 0.01 between the congestion wanted and the value achieved by MAXCS.
Homogeneous agents yield a value closer to that set by the authorities than
heterogeneous agents.

Agents changing their actions all the time produce the variation above the
congestion threshold. This phenomenon is produced by the nature of the prob-
lem: there is not enough capacity for all the agents to use the avenues, therefore
some of them will have to take the alternative routes using little streets in the
city. Even though all of them (for the sake of the model) would prefer to use the
main avenues, as they would move faster.

The agent individual behavior is analyzed in figures 5 and 7. Each of the
squares represents an agent in the system. The squares are shaded depending on
the use of the avenues every 100 days: [0,25] white square, [26,50] gray square,
[51,75] dark gray square and [76,100] black square. Agent 1 is the top left agent,
agent 10 is at the end of the first row and agent 101 is the square at the bottom
left. Hence, those agents using an avenue all the time are shaded in black, and
those not using it in white, those using it not so often in gray. For example,
in Fig. 5 it can be seen that agents 10, 35 and 95 are using always the side
streets, while those agents in gray are changing between both avenues and the
side streets.
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These individual behavior figures are plotted using a single run, as averaging
would blur the results, due to the random avenue usage. Random meant as that
for different runs, different agents will use different avenues, not random behavior
of the agents as such.

Fig. 5. Individual avenue usage for 101 homogeneous agents.

Fig. 6. Individual avenue usage for 101 heterogeneous agents with a 0.1 random change.

The three individual behavior graphics are taken at different steps, mainly
the first one (1100) at a time where the agents have adapted already, are still
exploring, hence they have not fixed to use a specific avenue. The fixation comes
after step 2500, when the GA is not working anymore and the agents are exploit-
ing their knowledge. It can clearly be seen a group of agents which is in light
gray shade. These agents are balancing the usage of the avenues and the side
streets.1 The fact that some agents fix to a given avenue, either 1 or 2, leaves
with no choice the other agents, but to keep trying the side streets and the av-
enues. When these vacillating agents take the side streets, they allow the others
1 These agents are called vacillating agents, and they produce the Nash equilibrium

of the problem [11].
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Fig. 7. Individual avenue usage for 101 heterogeneous agents with a 0.01 random
change.

to use the avenues without congestion, while when they take the avenues they
over-congest them, producing comfort in the side streets. Hence, they balance
the system.

From the different experimental settings shown in Figs. 3 and 4, it can be
inferred, from the agents behavior, that the main factor for adaptation is the
reward, rather than the perception of the agents. Therefore, this simulation can
be used by the authorities to set the policies (i.e. rewards) to achieve the con-
gestion levels wanted in the city avenues. It can be seen that heterogeneity is
a crucial factor in the agents’ behavior (Fig. 7), as they fix quicker to either
avenue, leaving 20% of the agents to change between avenues and side streets.
Analysis of the evolved rules show very general rules, (e.g. ##########:2)
for some agents, but very specific (e.g. 100##11#01:0) for others. This speci-
ficity is produced by the initial preference of the agents for the side streets or
a given avenue. Even though one would think that the latter example would
be more advanced than the former, it is the opposite. The agents that fix to
use certain avenue, as the first rule shows: whatever happens take avenue 2, is
the best strategy. This is due to the nature of the problem, because by doing
this, the agent will profit from the vacillation of those that are changing be-
tween the side streets (action 0) and the different avenues (actions 1 and 2).2 As
Littman [17] has pointed out, when agents in a multi-agent problem achieve a
Nash equilibrium, it is considered an optimum performance. Hence, the solution
that emerged from MAXCS’s co-evolution is the optimum performance. This is
the reason given by the author to claim that the city authorities and the people
in general could use the model presented here to forecast any changes in the
avenue congestion or to forecast the avenue usage.

2 Because a Nash equilibrium is the best possible action, given the other agents’ action
and no agent can profit better, but by changing strategy [3]. The interested reader
can find the game theoretical discussion of the problem in [9].
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7 Conclusions

This paper has shown how a homogeneous and heterogeneous multi-agent system
can learn from the traffic reports co-evolving to produce traffic self-organization
using inductive reasoning. Mainly this co-evolution being an effect of the reward
the agents receive, rather than their perception of the traffic information.

Whether they decide to use it or not, the traffic information is relevant for
some of the agents, but it is not a crucial factor. The solution has been found in
some agents that use consistently either avenue 1 or 2, and leave no option for
the others to change from the side streets to the avenues, balancing the avenue
congestion.

Another factor that is crucial for the agents’ behavior was the level of tol-
erance set individually, as the agents have learned mainly based on the reward
they receive, rather than in their individual perception.

Several experiments with different thresholds and different number of agents
show that this evolutionary computation approach for traffic self-organization is
feasible and could be used both, by the people – to decide which avenue to take
for their journey – and by the city authorities to assess which city routes need
expansion or an alternative path (such as another metro line, bicycle lanes, or
which public transport mode to improve).

The learning classifier system approach has been successful in achieving
optimal performance (in the form of a Nash equilibrium) and in evolving readable
rules, which indicate the preference of the agents, hence an individual behavior
pattern can be analyzed.

The results reported are encouraging and more research is planned in this
direction.
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